Expression of BRG1, a human SWI/SNF component, affects the organisation of actin filaments through the RhoA signalling pathway.
نویسندگان
چکیده
The human BRG1 (brahma-related gene 1) protein is a component of the SWI/SNF family of the ATP-dependent chromatin remodelling complexes. We show here that expression of the BRG1 protein, but not of an ATPase-deficient BRG1 protein, in BRG1-deficient SW13 cells alters the organisation of actin filaments. BRG1 expression induces the formation of thick actin filament bundles resembling stress-fibres, structures that are rarely seen in native SW13 cells. BRG1 expression does not influence the activity state of the RhoA-GTPase, which is involved in stress-fibre formation. We find that RhoA is equally activated by stimuli, such as serum, in BRG1-expressing cells, ATPase-deficient BRG1-expressing cells and native SW13 cells. However, the activation of RhoA by lysophosphatidic acid and serum does not trigger the formation of stress-fibre-like structures in SW13 cells. Activation of the RhoA-GTPase in BRG1-expressing cells induces stress-fibre-like structures, indicating that the BRG1 can couple RhoA activation to stress-fibre formation. At least two downstream effectors are involved in stress-fibre formation, Rho-kinase/ROCK and Dia. BRG1 expression, but not the expression of the ATP-deficient BRG1, increases the protein level of ROCK1, one form of the Rho-kinase/ROCK. That this is of importance is supported by the findings that an increased Rho-kinase/ROCK activity in SW13 cells, obtained by overexpressing wild-type ROCK1 and ROCK2, induces stress-fibre formation. No specificity between the two Rho-kinase/ROCK forms exists. Our results suggest that the BRG1 protein affects the RhoA pathway by increasing the protein level of ROCK1, which allows stress-fibre-like structures to form.
منابع مشابه
Role of Brg1 in progression of esophageal squamous cell carcinoma
Objective(s): Epigenetic regulation of gene expression can be carried out through chromatin remodeling enzymes such as SWI/SNF. Brg1 also known as SMARCA4 is a catalytic subunit of SWI/SNF, which is necessary for MMPs expression. Matrix metalloproteinases (MMPs) are known as important player enzymes during tumor progression and metastasis. Aberrant epigenetic modification of chromatin should be...
متن کاملBRG1 and BRM loss selectively impacts RB and P53, respectively: BRG1 and BRM have differential functions in vivo
The SWI/SNF complex is an important regulator of gene expression that functions by interacting with a diverse array of cellular proteins. The catalytic subunits of SWI/SNF, BRG1 and BRM, are frequently lost alone or concomitantly in a range of different cancer types. This loss abrogates SWI/SNF complex function as well as the functions of proteins that are required for SWI/SNF function, such as...
متن کاملTranscriptional Repression by the BRG1-SWI/SNF Complex Affects the Pluripotency of Human Embryonic Stem Cells
The SWI/SNF complex plays an important role in mouse embryonic stem cells (mESCs), but it remains to be determined whether this complex is required for the pluripotency of human ESCs (hESCs). Using RNAi, we demonstrated that depletion of BRG1, the catalytic subunit of the SWI/SNF complex, led to impaired self-renewing ability and dysregulated lineage specification of hESCs. A unique composition...
متن کاملCloning and characterization of hELD/OSA1, a novel BRG1 interacting protein.
A highly conserved multisubunit enzymic complex, SWI/SNF, participates in the regulation of eukaryote gene expression through its ability to remodel chromatin. While a single component of SWI/SNF, Swi2 or a related protein, can perform this function in vitro, the other components appear to modulate the activity and specificity of the complex in vivo. Here we describe the cloning of hELD/OSA1, a...
متن کاملMITF-Independent Pro-Survival Role of BRG1-Containing SWI/SNF Complex in Melanoma Cells
Metastasized malignant melanoma has a poor prognosis because of its intrinsic resistance to chemotherapy and radiotherapy. The central role in the melanoma transcriptional network has the transcription factor MITF (microphthalmia-associated transcription factor). It has been shown recently that the expression of MITF and some of its target genes require the SWI/SNF chromatin remodeling complex....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 115 Pt 13 شماره
صفحات -
تاریخ انتشار 2002